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Sandia National Laboratories has been engaged in hardware and software codesign activities
for a number of years, indeed, it might be argued that prototyping of clusters as far back
as the CPLANT machines and many large capability resources including ASCI Red and
RedStorm were examples of codesigned solutions. As the research supporting our codesign
activities has moved closer to investigating on-node runtime behavior a nature hunger has
grown for detailed analysis of both hardware and algorithm performance from the perspective
of low-level operations.

The Application Characterization for Exascale (APEX) LDRD was a project concieved
of addressing some of these concerns. Primarily the research was to intended to focus on
generating accurate and reproducible low-level performance metrics using tools that could
scale to production-class code bases. Along side this research was an advocacy and analysis
role associated with evaluating tools for production use, working with leading industry ven-
dors to develop and refine solutions required by our code teams and to directly engage with
production code developers to form a context for the application analysis and a bridge to
the research community within Sandia. On each of these accounts significant progress has
been made, particularly, as this report will cover, in the low-level analysis of operations for
important classes of algorithms. This report summarizes the development of a collection of
tools under the APEX research program and leaves to other SAND and L2 milestone reports
the description of codesign progress with Sandia’s production users/developers.
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Chapter 1

Introduction

For over four decades Sandia National Laboratories has been a leading laboratory for the
design of large-scale engineering and physics simulation applications. These demanding
calculations have and continue to place to great strain on the leading computing architectures
of the day, not least because of the continued pressure for greater resolution of problems,
enhanced models of physical phonomena and an ever broadening range of users.

Given the continued to pressure to deliver high performance solutions to analysts across
the laboratories it will come as no surprise to many readers to know that a considerably
broad range of research is undertaken to identify workflow bottlenecks and to analyze our
existing use cases for opportunities to improve scientific delivery.

In recent years the term ‘codesign’ has been used to describe the bringing together of
domain experts, application developers, users, machine architects and many others to collec-
tively identify and analyze tradeoffs for novel solutions in optimizing the scientific delivery
of the laboratories. It might be argued that even as far back as the early CPLANT clusters
and many large capability resources including the NCUBE, ASCI Red [4] and most recently
Red Storm [15, 16, 2], Sandia has been engaged in this activity.

A feature of many recent studies has however shifted from assessment of full-scale machine
designs – which are often focused on interconnection networks – to assessment of in-node
performance. This is partly driven by the broadening range of solutions available in con-
temporary supercomputer designs but also the growing difficulty being found by application
developers in extracting performance from recent, more complex node architectures. We are
finding that this continues to be particularly challenging in the area of instruction vectoriza-
tion. A natural consequence of this refocusing is the need to efficiently identify and extract
low-level performance information about the operations production-class applications and
algorithms execute. The output has several uses including: (1) supporting algorithm and
bottleneck analysis; (2) evaluation of libraries, compilers and system-software components
which contribute to (or in some cases inhibit) performance and, finally, (3) as a design or
feedback mechanism to hardware architects who rely on this kind of information to design
the processors, accelerators and memory subsystems of the future.

The Application Characterization for Exascale (APEX) LDRD was a project conceived
of addressing some of these concerns. Primarily the research was to intended to focus on
generating accurate and reproducible low-level performance metrics using tools that could
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scale to production-class code bases, as well as multi-threaded execution (preemptively sup-
porting programming models that will be offered on the ASC Trinity Phase I and Phase
II deployments). Along side this research was an advocacy and analysis role associated
with evaluating tools for production use, working with leading industry vendors to develop
and refine solutions required by our code teams and to directly engage with production
code developers to form a context for the application analysis and a bridge to the research
community within Sandia. On each of these counts significant progress has been made, par-
ticularly, as this report will cover, in the low-level analysis of operations for important classes
of algorithms. This report summarizes the development of a collection of tools under the
APEX research program and leaves to other SAND and L2 milestone reports the description
of codesign progress with Sandia’s production users/developers.

The reader is refered to some SAND reports, papers and invited talks [14, 11, 10, 8, 9]
for further information on APEX and the results obtained using the tools described herein.
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Chapter 2

APEX Toolkit

APEX is a suite of tools which allow users to perform low-level analysis of performance or
other areas of investigation on applications ranging from kernels through to larger production-
scale binaries. The input to APEX tools is a binary executable (either dynamically or stat-
ically linked) which allows developers to utilize standard compiler or build tool chains on
our high performance computing platforms. Instrumentation for analysis is performed dur-
ing runtime which allows for complete access to the executable’s data spaces and all loaded
libraries.

In order to focus on the development and analysis aspects of this project the decision was
made early on to limit the scope of the APEX toolkit to X86-64 and Xeon Phi Knights Corner
microarchitectures as these are currently deployed in production or are used in preparation
for the forthcoming Trinity deployment. Along a similar thought process the tools utilize
the PIN binary analysis engine [13] which provides decode, analysis, instrumentation and
recompile services although it is important to note this decision is simply to focus the scope
of the project and a similar approach is possible across a variety of microarchitectures and
platforms. PIN utilizes the XED2 [3] instruction assembly/disassembly engine to provide a
lightweight ability to dynamically operate over instructions.

The analysis of applications using the APEX toolkit is usually performed in four phases,
and as stated, these all occur during execution.

1. Instruction Analysis in which instruction information is decoded and provided to
the analysis engine.

2. Instruction/Function Instrumentation based on analysis at instruction level spe-
cific instructions or groups of instructions may be instrumented. Typically these in-
structions have small counters added to their execution to keep track of behavior.

3. Application Execution - the main application (with any additional instrumented
instructions) is executed and book-keeping added by APEX is maintained.

4. Output Generation - the results of booking keeping information is output into text
files for later user-driven processing/analysis.

The dynamic decoding, instrumentation and then recompilation of instrumented analysis
routines into the binary results in highly efficient analysis since only areas of interest need

11



...
ADD r0, r1
MULT r2, r3
...
CMP-LQ r0, r1, ELSE_BR
ADD r2, r3
JMP MERGE_BR
ELSE_BR:
MULT r3, r2
..
MERGE_BR
ADD r3, r2
...

{

{

{

{

...
ADD r0, r1
MULT r2, r3
CMP-LQ r0, r1, ELSE_BR

ELSE_BR:
MULT r3, r2
...

...
ADD r2, r3
...

MERGE_BR:
ADD r3, r2
...

Block 1

Block 2

Block 3
Block 4

Block 5

...

Figure 2.1. TESSERAE Instruction Blocking

to have instrumentation added. However, even small instrumentation routines added to the
binary can have a significant impact on execution speed. The precise overhead is specific to
the application, the amount of instrumentation added and the problem input/configuration
being run by the application. In our experiences tools written using APEX are typically
3X to 40X slower than non-instrumented variants. In many cases the slowdown is near the
lower end of this spectrum because APEX has been designed to be as lightweight as possible
in adding instrumentation and to ensure the multi-threading support utilizes lightweight
integer atomics to prevent interfearance with the running threads.

2.1 Low-Level Instruction Analysis using TESSERAE

The first developed under the APEX LDRD was the TESSERAE low-level instruction analy-
sis engine. TESSERAE takes its name from its ability to break applications down into short
instruction segments that are roughly the same as standard basic blocks found in many
compilers. Basic blocks are essentially a linear flow of instructions which have no branches
into them or out of them except as the end of sequence.
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Figure 2.1 shows the process by which TESSERAE proceeds to break an instruction
sequence into blocks. Each instruction being executed is presented by the PIN engine to
the TESSERAE analysis routine. The instruction is checked for whether it is a branching
operation. If the operation cannot cause a branch it is added to list which represents the
“currently being decoded block.” If the operation can cause a branching side effect, then
the “currently being decoded block” is completed and saved. TESSERAE ensures blocks
are unique by checking the address of the first instruction within each block, thus allowing
only unique blocks to be saved. By recording the branch true and branch false addresses
following a branch operation the control flow through blocks of the program can be recorded
by TESSERAE and used for analysis.

When a block is marked as complete (i.e. a branching operation to terminate the sequence
is found), TESSERAE re-analyzes the block operations to build a schedule of operations that
are performed with focus on several metrics: (1) the number of floating point operations per-
formed in both single and double precision; (2) the number of read/write memory operations;
(3) the number of bytes read/written into the memory system (note that this is from the
perspective of the processor, not the system RAM); (4) the level of vectorization achieved
for double/single precision instructions and then several other metrics relating to logical op-
erations, register clears etc. As a final addition to the block before the application is allowed
to execute, TESSERAE inserts an instruction atomic increment on the first instruction in
the block. This ensures a single map of the application block infrastructure can be generated
and then used within a multi-threaded application without significant performance loss.

2.1.1 Floating Point Instruction Analysis

While performing floating point instruction analysis during block creation, TESSERAE is
required to perform an assessment on the number of mathematical operations the instruction
performs. We define instructions to be the number of decoded items that the processor will
execute, e.g. a vector floating point addition; operations are defined to be the number of
mathematical/logical sequences performed. In the case of a vectorized floating point add,
the number of operations would be with operand width of the register. This is an important
aspect of the tool because it allows users to gain feedback on the intensity of vectorization
used by the processor. As a simple example of the number of operations divided by the
number of floating point instructions equals, say, 4, then the block would have a high vector
intensity if running on an AVX [7] or AVX-2 capable processor such as Haswell [12] (Ta-
ble 2.1 shows the maximum vector width for single precision (SP) and double precision (DP)
instructions). We perform this analysis on single and double precision instructions/operands
independently because vector register widths are fixed bit-length meaning single-precision
instructions should execute twice as many operands and therefore have a higher intensity.

The operation counts of individual instructions are performed by walking the instruction
registers. Vector registers on Intel architectures are set to the full width supported by the
micro-architecture but the number of operations actually performed during execution is set
by bits in the instruction decoding. For instance, on a Haswell processor the physical width

13



Processor SP Max/Ins DP Max/Ins
Nehalem / Westmere 4 2
Sandy Bridge / Ivy Bridge 8 4
Haswell 8 4
Knights Corner 16 8
Knights Landing 16 8

Table 2.1. Maximum Operations Performed per Vector
Instruction in Intel Processor Families

of the vector register is 256-bits but a 128-bit operation can be performed if the compiler
generates a prefix informing the processor that this is intended. In order for TESSERAE to
produce an accurate prediction of the operation counts the registers and prefix is assessed
and the maximum found width used.

2.1.2 Masked Register Analysis

In the Haswell family of processors some instructions gain a capability of being able to mask
out specific lanes during execution. This allows for instruction sequences to execute fewer
than the maximum number of operations if the masks used are set to utilize only part of
the register. Figures 2.2 and 2.3 show the standard and masked operations respectively.
To correctly count masked operations TESSERAE creates a counter per instruction which
utilize masks, initially set to zero. It then adds a small additional piece of instrumentation
at these instructions which extracts the mask being used and atomically adds this to the
counter associated with that instruction. This allows an intensity metric to be produced
which genuinely reflects the executed sequence even when masked register are used.

We note that the use of masked registers is significantly expanded on the Xeon Phi
Knights Corner card and is a significant feature of the AVX512 instruction ISA which is
developed for the forthcoming Knights Landing processor used in Trinity. Therefore it is a
requirement of good analysis tools that support for masking operations is included. During
our prototyping analysis of TESSERAE on Knights Corner we were not able to find hardware
support for independently counting the number of floating point operations executed when
masks are applied. The inability of hardware to perform many of the operations developed
in TESSERAE motivates the continued use of tools which can, independent of the hardware,
permit such analysis to take place.

Figure 2.4 shows TESSERAE data relating to floating point intensity and vectorization
levels achieved. Floating-point intensity evaluates the percentage of program instructions ex-
ecuted which exercise a floating-point unit to perform arithmetic (note TESSERAE excludes
logical and register clears which utilize these units in X86). The most intense application
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Figure 2.2. Standard (Unmasked) Vector Operations on
an 8-wide Vector Unit
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Figure 2.3. Masked Vector Operations on an 8-wide Vector
Unit
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Figure 2.4. Floating Point Intensity and Vectorization of
Total Instructions

executed in the LULESH hydrodynamics benchmark with approximately 30% of its instruc-
tions performing arithmetic. The typical intensity of the applications shown is between 15%
and 30%. In terms of vectorization levels MiniFE and MiniMD have the highest level of op-
erations performed by vector instructions – 74% and 82% respectively reflecting in part the
aggressive level of optimization applied to the mini-applications over the past four years of
Sandia’s codesign program. LULESH has the lowest level of vectorization achieved (approx.
4%) which also helps to explain why a significant number of its program instructions are
floating point arithmetic-based. The tradeoff here is executing more operations within each
instruction (when code is well vectorized) versus executing many more scalar instructions.

2.1.3 Application Memory Access Traits

TESSERAE is able to record all memory access by walking the decoded address or index
calculations within each instruction. The encoded pattern describes the base registers, any
indexing required to be applied and the operand width which is to be either loaded or stored.

In Figure 2.5 we show the bytes read to bytes written ratio of the applications selected
for study. MiniFE has the most intense read activity with 10 bytes read for each byte
written. We attribute this to the complex generation of indices required when computing
over CSR-formatted sparse matrices. MiniPIC has the lowest read intensity with only 2.4
bytes loaded for each byte written. Understanding these ratios has significant implications for
the potential design of micro-architecture features such as the number of read/write ports on
caches and the depth of load/store queues. In this particular study, few applications benefit
from these being balanced and would benefit from a greater availability of resources for read
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Figure 2.5. Ratio of Bytes Read to Bytes Written

operations.

The average memory operation request size per application is shown in Figure 2.6. These
values are calculated by aggregating the number of bytes to be loaded and stored divided
by a count of memory operations issued. MiniMD has the highest of these average request
sizes with approximately 11 bytes per operation. The size of each memory operation is a
useful metric in the optimization of processor bus widths which can consume large amounts
of energy if over provisioned. A value of 8 is fairly common for high performance scientific
codes because this reflects the width of double precision operands. Values above 8 mean that
vectorized load/store operations are being used to move data into and out of the processor
core registers.

2.1.4 Bytes to FLOP/s Ratios

A commonly cited metric in high performance computing over the past two decades has been
that of bytes-to-FLOP/s ratio – essentially how many bytes of bandwidth or storage can the
application utilize for each floating-point operation provided. In Figure 2.7 we evaluate the
bandwidth-based ratio. Here we take each byte loaded/stored and evaluate it as a ratio of
the number of double-precision floating point operations executed since it is typical for one
of these metrics to gate application performance. MiniAero has highest ratio of bytes-to-
FLOP/s at approximately 23 indicating that the code expects to require 23 bytes (greater
than two double precision operands) to be loaded for each arithmetic operation. This may
in part be explained by the unstructured nature of the mesh requiring additional indices to
be loaded as well as copy operations to be performed in parts of the code. LULESH has a
typical signature of a code with low register reuse, requiring roughly 15 bytes to be loaded
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Figure 2.6. Average Memory Operation Request Size

(two double precision operands) per arithmetic operation. Finally, MiniMD and MiniFE have
lower requirements which reflects the code’s greater use of registers to store temporaries.

Given the significant growth of floating-point performance of processors, the results show
a worrying trend. That our codes expect to be able to perform multiple bytes of loads/stores
into the memory hierarchy and memory subsystem for each operation executed. Assuming a
1 TFLOP/s processor – which is a fairly low number by contemporary standards – assuming
all data were serviced by the L1 caches at least 8 TB/s of cache-to-core performance would be
required to deliver balanced performance for even the most efficient of these codes. At worst,
nearly 23 TB/s of L1-cache-to-core bandwidth would be required assuming all operands
were loaded from L1. The data from TESSERAE is a lower bound on memory-subsystem
performance since it calculates the demanded bytes loaded/stored by the processor. Many of
these requests are successfully returned from the various caches before memory. Nonetheless,
these values help us to identify the absolute minimum level of bandwidth that is required
by the codes evaluated. This is a key design tradeoff which has significant implications on
the continued push to improve floating point performance versus genuinely balanced access
to memory and compute.

2.1.5 Instruction Memory Access

A feature of many CISC instruction architectures (of which X86 is perhaps the best known)
is that memory operands can often be loaded by instructions. In RISC architectures memory
operands are typically loaded by specific load or store instructions and computation must
occur only on registers. In most cases the number of memory operations performed is
approximately equal since this is usually a property of the algorithm being compiled rather
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than the architecture being used for execution. In Figure 2.8 we show the approximate
percentage of instructions in the application studied which perform memory accesses. The
purpose of these results is to evaluate how many operations execute directly between registers
only. The use of registers (and not memory accesses) has the potential to save energy as
accesses can be localized and provides an indication of the level of optimization which should
be spent in reducing access times to the processor register files and on-chip buses versus
optimization for access to the memory hierarchy/memory sub-systems.

LULESH has the highest percentage of instructions which access memory directly at
approximately 57%. As described earlier, the unstructured nature of the problem being
solved and the low-level of vectorization make the generation of this type of code more
likely. MiniMD has the lowest use of memory access in instructions pointing to a high level
of register reuse within the code. This is reflected in the low level of bytes loaded/stored to
floating point operations executed.

2.2 Floating Point Error Modeling using GLITCH

Late in the APEX LDRD a collaboration with Rob Armstrong and Jackson Mayo of Sandia’s
Livermore campus raised questions as to how likely Sandia’s codes might be to errors in
floating point units. For this specific case we assume operands may arrive from memory
uncorrupted due to the presence of ECC checks within the memory system and then either
ECC or parity checking within the caches and buses. However, when the operands are in
the registers and are moved to the floating point arithmetic units a single bit flip may occur
either during transit or during the calculation. This may seem a particularly specific case
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but the floating point registers and floating point ALUs are particularly complex parts of
the processor and due to area considerations may not have all of the units correctly error
checked.

This works remains in progress but an initial prototype multi-threaded prototype tool
called GLITCH has been written within the APEX framework. GLITCH uses the instruction
instrumentation phase of APEX to detect floating-point operations (both scalar and vector-
ized) as well as the vector-width/operand-width logic detailed earlier. When the operands
widths are known, GLITCH applies a Poisson model to selecting the floating point register
and the precise bit which is to be inverted. The value (with an inverted bit) is then replaced
within the floating point register being used and execution allowed to proceed. The exact
parameters to the underlying Poisson process are configurable to investigate more or less
error prone system behavior.

Initial testing shows many applications are able to continue execution but the errors
injected propagate into the system eventually leading to numerical collapse of the systems
being solved (which almost always causes the application to detect an error and halt) or to
produce a significantly incorrect answer. Surprisingly few applications are able to gracefully
handle an error of this kind and continue to yield a final numerical result close to an un-
modified run. The results indicate high dependence on truly correct numerical results. This
implies that current HPC codes are highly sensitive to errors in the handling of floating point
values but in turn raises questions as to how likely silent data corruption is within existing
runs. If applications are as sensitive to faults as they appear when being run in GLITCH,
then even moderately frequent minor SDC would be very likely to result in application halts.
Given that this is still thankfully a largely rare occurance on many machines today we might
conclude that SDC is a fairly infrequently occuring event.
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GLITCH is being further developed in collaboration with Rob Armstrong and Jackson
Mayo for the purposes of prototyping algorithm based solutions to faults. The work started
in this LDRD has given us a foundation in examining some of the issues outlined and future
additions to the GLITCH tool will extend this to arrays of indices (currently an area of
concern for error-prone memories) and other program structures such as the instruction
pointer. We note that the use of the APEX framework and the design which includes
multi-threading support is allowing for use on large applications that may include Kokkos
or advanced parallelization schemes we expect to use on Trinity Phase-I and Phase-II.

2.3 Early Instruction Level Analysis of Knights Land-

ing

The Intel Xeon Phi Knights Landing processor will be installed in the Trinity Phase-II
deployment in 2017. While details of the processor remain confidential, Intel has announced
that the processor will feature the AVX512 instruction set along with specific additions for
HPC-oriented vector operations. The architecture specification for AVX512 is now public to
enable compiler and tool writers to take advantage of early access. Along side the publication
of the specifciation a tool named SDE (Software Development Environment) is also made
available to permit emulation of the new instructions. SDE includes a mode to output
several types of analysis including an instruction mix histogram which contains limited (when
compared to APEX-TESSERAE) output on the running binary. For an initial analysis,
which follows, we have used the SDE output with additional post-processing steps to generate
information relating to several miniapplications running on an emulated KNL infrastructure.
While these applications are run using 16 OpenMP threads to enable an analysis of multi-
threading we realize more accurate emulation when the final core counts are made public
will improve accuracy.

Figure 2.9 breaks down the instructions executed by each benchmark on the KNL emu-
lation platform. In an ideal high performing application we would like to see the majority
of instructions executed to be of the AVX512 ISA with most of the data movement oper-
ations using contiguous access as opposed to gather/scatter operations since these usually
provide the highest level of performance. We note that the majority of instructions of HPCG
(which is Sandia’s main solver benchmark) do not execute floating point arithmetic and a
significant proportion of these relate to logical operations associated with managing the CSR
matrix format and multi-grid handling. This presents a potential optimization target as the
majority of performance in the KNL processor is directed towards vectorized codes.

As stated, the highest performing option on the Knights Landing processor is likely to
come from wide, contiguous access. In Figure 2.10 we show a break down of memory accesses
by the number of bytes requested and the operation being performed. XSBench provides
the most concerning results with a very high proportion of small read operations likely
attributable to the table look operations being performed in the benchmark. The effect of
many small accesses is to underutilize the L1 to core bandwidth which expects wide vector
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Figure 2.9. Breakdown of Instructions Executed on the
Knights Landing Emulation Environment

loads/stores potentially losing performance.

A key feature of the APEX TESSERAE tool described earlier is the ability to inspect
masked vector operations by arithemtic operation and type of instruction. The SDE envi-
ronment reporting used for this study has much lower fidelity grouping all vector operations
into single metrics without the breakdown supplied by TESSERAE. Therefore, the figures
are likely be quite different to those produced by TESSERAE as all operations which utilize
a vector unit are included. Nonetheless, it is currently the most accurate representation of
KNL masked vector operations that we have available. Figure 2.11 shows the breakdown by
benchmark of various masked vector operations. The majority of operations in all bench-
marks are scalar (at minimum 60%). Very few codes except for HPCG are able to utilize the
masking operations considerably. Over time we expect greater focus on vectorization and
code optimization as the Trinity platform becomes available. This data serves as a starting
baseline and shows we must continue to invest effort in addressing these concerns if we want
to see strong performance on a heavily vector-based architecture.
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Chapter 3

Ariel Front End to the Structural
Simulation Toolkit

The Structural Simulation Toolkit (SST) is one of the leading architectural simulation frame-
works in the community today. The modular infrastructure allows users to design systems
easily with plug-and-play swap out of components as needed. One of the processor front
ends in the toolkit – Ariel – has been significantly augmented with research from the APEX
LDRD with respect to the addition of instruction and operation counting mechanisms as
well as enhanced memory operation processing. The basis for these additions originates
in the TESSERAE block processing tool described earlier in this report except that Ariel
forwards much of its block assessment into the Ariel-SST component to provide execution
information. The Ariel front end (with the APEX) additions has had a significant impact
on the SST user community and is now the most frequently used processor model at Sandia.
Its use was pivotal to the recent multi-level memory analysis of sorting algorithms IPDPS
submission [1] which was awarded best paper.
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Chapter 4

KokkosP Profiling Interface

Kokkos is C++-based programming model [5, 6] which abstracts out underlying differences
in hardware and data accessing to deliver strong, portable performance across diverse ar-
chitectures. At its heart the programming model provides two areas of focus: (1) a set of
parallel patterns that provide efficient parallel dispatch for CPUs, multi/many-core proces-
sors and GPUs; (2) a set of ‘views’ which provide a logical mapping of data access than can
be changed at compile time to favor the device being used for execution. Results from the
initial Kokkos porting activities show performance than is approximately 90% of well tuned
native implementations.

4.1 Profiling Interface for Kokkos Kernels

During the development and optimization of Kokkos applications it became obvious that
many existing performance tools are well optimized for specific programming models (for
instance, Intel’s VTune product provides strong support for OpenMP directives). When
using Kokkos, which seeks to abstract out the dispatch of kernels, it was noticed that kernel
execution times were attributed to components of the Kokkos runtime and not to the kernels
being called. Similar problems have been shown on a variety of tools. This motivated the
need for a solution independent of any specific performance analysis tool.

Figure 4.1 shows how KokkosP calls are made. The process works by having a series of
function pointers defined in the Kokkos runtime – a pair for each of the parallel dispatch
types presently supported (parallel-for, parallel-reduce and parallel-scan). During initial-
ization these function pointers are resolved to profiling libraries specified by the user in
their environment variables. When a parallel-for call is made during execution, the function
pointer is queried. If it has been defined then the profiling tool is called otherwise execution
continues. By providing runtime hooks that have low overhead checks during the parallel
dispatch regions we can enable the KokkosP interface to be compiled into every Kokkos
program with low overhead. This provides an “always-available” set of profiling hooks if the
application developer needs to query the kernels to analyze performance.

So far we have used the KokkosP interface to produce simple profiling tools such as kernel
timers, memory heap checkers as well as tools that utilize platform specific information such
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...
parallel_for( .. [&] {
    ..
});
...

Call KokkosP::Start_Kernel
for( .. ) {
   Execute Lambda
}
Call KokkosP::End_Kernel

Start_Kernel(..) {
   START_TIMER
}

End_Kernel(..) {
   STOP_TIMER
   RECORD_TIME
}

Dynamically Resolved at Kokkos::Initialize()

Figure 4.1. KokkosP Infrastructure for a Parallel-For Dis-
patch

as memory bandwidth profiling on a per-kernel basis for Haswell processors and floating-
point intensity profiling facilities on Sandy Bridge processors. We note that the initialization
parameters of Kokkos are passed to the profiling tools as well as device information for which
the parallel dispatch will be launched. This enables us to utilize counters on the GPU when
kernels are executed on this class of device as well.

Figures 4.2 and 4.3 show kernel timing analysis from the Intel Haswell and IBM POWER8
test beds respectively. We note the similarity between the profiles showing that kernel time
for MiniAero is similar across the two machines (also reflected in application runtime). In
this instance, we were able to run the same profiling tool across two diverse architectures
which is rarely possible with many performance tools. The profiling output presented is for
the kernels written using Kokkos allowing us to provide context awareness (such as dispatch
type) to the output if needed.

KokkosP profiling tools remain an area of further research, particularly during FY16.
We expect to be able to utilize tools for several activities in the Trilab codesign milestone
and in our engagement with several code groups in 1500. The ownership for development of
KokkosP will move from the prototypes and APEX connectors developed in this LDRD to
the Kokkos development group for these activities.
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Chapter 5

Conclusions

This SAND report is a short description of the Application Characterization for Exascale
LDRD. It describes the creation of several tools for the purposes of exploring low-level
application metrics, impact of unreliable floating-point calculations and several other char-
acterization mechanisms including emulation analysis for the future ATS-1 platform. The
tools are slowly being applied to a greater range of codes to inform our codesign activities
and provide initial informative metrics in our discussions with vendors. Moreover, these
base metrics, which were often previously described by rules of thumb, are helping to quan-
titatively guide some of our thinking as to the directions and potential improvements that
we may be able to find in platform procurements or through the National Supercomputing
Initiative (NSCI) which is due to start operation in the coming financial year.

Unlike performance counter based solutions, the tools described in this report provide
cross platform capabilities and greater reproducibility between generations of architectures.
The inability to utilize counters for this kind of work remains a frustrating aspect to our
codesign activities but is in part driven by the many processor/hardware designs being offered
(which then lead to varying implementations that cannot count the same hardware activity
the same way during execution). By being active at the executable level, APEX tools are
able to obtain metrics that provide deeper understanding than is currently possible through
hardware counters alone. We argue that analysis from both types of tool is desirable, perhaps
even required, for this kind of study.

Throughout this LDRD there has been a keen focus of engagement - both with indus-
try leading vendors and with production code teams at Sandia. The collaborations with
industry have involved providing some and other metrics, not reported here, to Intel, AMD,
Hewlett Packard and IBM helping to shape deeper discussions as to the properties of our
algorithms. With production code teams we have been able to help drive a focus on vectoriza-
tion and assess slow code (often the result of high levels of memory access or gather/scatter
instructions). Much more remains to be done, the porting of these tools to support analysis
on Intel’s Xeon Phi Knights Landing architecture remains ahead as well as deepening the
capabilities to support even finer levels of analysis.

As a final addition late in the LDRD a collaboration with the Kokkos developers (Carter
Edwards and Christian Trott) lead to the development of the KokkosP interface – initially
prototyped as a mechanism for dynamic binary attachment within APEX before the PIN tool
development showed promise. The interface utilizes dynamic loading of profiling libraries
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to provide performance information within the context of Kokkos parallel patterns. Use of
the interface for the ASC L2 Trilab milestone in FY15 showed that the tools connected to
KokkosP were able to provide insight even in environments (such as the OpenMP backend)
where profiling was not currently possible. The ability to now connect this interface to
APEX-based tools is a further extension which allows us to provide vectorization and memory
access ratios to performance critical kernels written in Kokkos to a wide community of
developers.

In summary, APEX has been a broad project encompassing architecture research, the
development of tools and interfaces as well as the application of these tools to provide the
first insight for Sandia to the low-level mechanics of many of the laboratories’ most important
algorithms. The tools developed are robust and support multi-threading, priming them for
further use during the porting of applications to Trinity. Further, the research activities
have created an environment in which it was possible to reach out to code teams and begin
collaborations which will be essential as we continue to move towards our Exascale ambitions.
The capabilities described in this report are just the start of greater levels of sophistication
that Sandia will bring to the assessment of production algorithms in the coming years.
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